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Abstract: Marine chitinous byproducts possess significant applications in many fields. In this research,
different kinds of fishery chitin-containing byproducts from shrimp (shrimp head powder (SHP) and
demineralized shrimp shell powder), crab (demineralized crab shell powder), as well as squid (squid
pen powder) were used to provide both carbon and nitrogen (C/N) nutrients for the production of
an exochitinase via Streptomyces speibonae TKU048, a chitinolytic bacterium isolated from Taiwanese
soils. S. speibonae TKU048 expressed the highest exochitinase productivity (45.668 U/mL) on 1.5%
SHP-containing medium at 37 ◦C for 2 days. Molecular weight determination analysis basing on
polyacrylamide gel electrophoresis revealed the mass of TKU048 exochitinase was approximately
21 kDa. The characterized exochitinase expressed some interesting properties, for example acidic
pH optima (pH 3 and pH 5–7) and a higher temperature optimum (60 ◦C). Furthermore, the main
hydrolysis mechanism of TKU048 exochitinase was N-acetyl-β-glucosaminidase-like activity; its most
suitable substrate was β-chitin powder. The hydrolysis experiment revealed that TKU048 exochitinase
was efficient in the cleavage of β-chitin powder, thereby releasing N-acetyl-d-glucosamine (GlcNAc,
monomer unit of chitin structure) as the major product with 0.335 mg/mL of GlcNAc concentration
and a yield of 73.64% after 96 h of incubation time. Thus, TKU048 exochitinase may have potential in
GlcNAc production due to its N-acetyl-β-glucosaminidase-like activity.

Keywords: exochitinase;β-chitin powder; N-acetyl-β-glucosaminidase; shrimp heads; Streptomyces speibonae

1. Introduction

Chitin is a straight-chain polymer of N-acetyl-d-glucosamine (GlcNAc) unit with β-1,4 linkage,
which is a very common polysaccharide in the world, second only to cellulose. By expressing
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various bioactivities, chitin and its derivatives are of interest to numerous researchers [1–8]. Until
now, chitin-containing materials from fishery byproducts (shells from crab or shrimp, or squid
pens) are the most important sources for chitin production. However, those chitinous materials
also contain a high amount of proteins as well as minerals [9,10]. Consequently, strong alkali
and acids are used to remove the protein and mineral salts from these resources to produce
chitin. As a result, these chemical procedures encounter several drawbacks when these chemical
procedures are applied, such as the release of alkaline wastewater containing a high concentration
of protein [11]. In green applications, those chitin-containing byproducts could also be used as
the nutrition sources for microorganism bioconversion to produce numerous bioactive compounds,
for instance, proteases [9,11,12], chitinases/chitosanases [2,4,13–18], α-glucosidase inhibitors [19–25],
exopolysaccharide [26–28], tyrosinase inhibitors [29,30], or chitin [1,31–33].

Bacterial strains, which include Bacillus [4,24,34], Paenibacillus [11,20,35], Serratia [36], and
Streptomyces [2], have been reported as the primary sources for chitinase production. Among
these, chitinase from various Streptomyces strains has been investigated [37–41]; however, most of
those researches used colloidal chitin (CC) as the source of carbon and nitrogen (C/N) for chitinolytic
enzyme production. In addition, there are few reports on chitinase production from Streptomyces
using squid pens, shrimp shells, or shrimp heads as the main source of C/N [2]. Based on the above,
it is interesting to investigate the application of shrimp heads for the production of chitinase via
Streptomyces bioconversion.

GlcNAc, the monomeric unit of chitin, has been found to exhibit many bioactivities that have
been widely applied in food, pharmaceutical, biomedical, and chemical industries [42–44]. Therefore,
the hydrolysis of chitin to produce GlcNAc has been explored [43]. Due to its chitin hydrolysis
ability, chitinase may be an efficient tool in GlcNAc production from chitin. Chitinases (EC.3.2.14)
can be divided into two groups: exochitinase and endochitinase. While endochitinase randomly
cleaves chitin at internal sites, exochitinase (divided into two subcategories: chitobiosidase and
N-acetyl-β-glucosaminidase) acts at the end point of chitin oligosaccharides to liberate (GlcNAc)2

(chitobiosidase) or GlcNAc (N-acetyl-β-glucosaminidase) [43]. Thus, the finding of a chitinolytic
enzyme with N-acetyl-β-glucosaminidase-like activity could prove promising in regard to its potential
for the production of GlcNAc by the enzymatic method.

In this research, an exochitinase-producing Streptomyces speibonae TKU048, was isolated in
Northern Taiwan using squid pen powder (SPP) as the sole source of C/N. The optimal conditions
for exochitinase production on different kinds of fishery chitin-containing byproducts from shrimp
(shrimp head powder (SHP) and demineralized shrimp shell powder (deSSP)), crab (demineralized
crab shell powder (deCSP)), as well as squid (squid pen powder (SPP)) and the enzyme characteristics
have been investigated. Furthermore, TKU048 exochitinase has been evaluated in relation to GlcNAc
production by using β-chitin powder as substrate.

2. Materials and Methods

2.1. Materials

Chitinous byproducts were obtained from Fwu-Sow Industry (Taichun, Taiwan) (for shrimp head
powder (SHP)) and Shin-Ma Frozen Food Co. (I-Lan, Taiwan) (for crab shells, shrimp shells, and squid
pens) [2]. Strong acid was applied to remove the mineral components in crab shell and shrimp shell to
produce demineralized shrimp shell and demineralized crab shell [20]. 3,5-Dinitrosalicylic acid (DNS),
p-nitrophenol (pNP), p-nitrophenyl-N-acetyl-β-d-glucosaminide (pNPg), and N-acetyl-d-glucosamine
used for determining chitinase activity were obtained from Sigma-Aldrich Corp. (Germany). The resin
for ion-exchange chromatography was purchased from BioRad (Hercules, CA, USA). Column KW-802.5
and KS-802 were obtained from Showa Denko K. K (Tokyo, Japan). Other chemicals used in this study
were the highest quality available.
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2.2. Screening of Exochitinase-Producing Bacterium

The isolation was conducted on the medium containing squid pen powder (SPP, 1% w/v),
MgSO4·7H2O (0.05% w/v), K2HPO4 (0.1% w/v), and agar (2% w/v). Firstly, 1 g of each soil sample,
obtained from arable lands in Northern Taiwan, was gently shaken with 100 mL of sterile saline for
5 min. The suspension was then serially diluted until a 106-fold dilution was obtained. One hundred
microliters of the final dilution were spread over a Petri dish containing isolation medium. Inoculated
Petri dishes were incubated at 37 ◦C for 24 h to get single colonies of bacteria. The pure bacterial strains
were then taken from the single colonies by streaking method. Following this, each isolated strain was
transferred to liquid media (1% SPP, 0.05% MgSO4·7H2O, and 0.1% K2HPO4) and cultivated for 3 days
at 37 ◦C and 150 rpm. The culture of each bacterial strains was centrifuged again at 12,000× g (Universal
320, Hettich Zentrifugen, Tuttlingen, Germany) for 10 min to collect the supernatant, which was tested
for exochitinase and chitinase activities. The bacterial strain which possessed the highest exochitinase
activity was named as TKU048 and selected for further experiments. DNA sequencing, as well as
biochemical and morphological methods were used to verify the identity of the TKU048 strain.

2.3. Enzyme Activity Assays

2.3.1. Exochitinase Activity Assay

Determination of exochitinase activity was conducted following a previously described method [2].
Briefly, 50 µL of sample (containing exochitinase) was transferred to a tube containing 500 µL of
sodium acetate buffer (50 mM, pH 5.8) and 100 µL of pNPg (1 mg/mL). The tube was immediately
incubated for 30 min at 37 ◦C. Sodium carbonate–bicarbonate buffer (325 µL) was added to the reaction
solution to eliminate exochitinase activity and introduce pNP coloration, which was measured by a
spectrophotometer at 420 nm. The amount of exochitinase which catalyzed the hydrolysis reaction of
pNPg to liberate 1 µmol of pNP in 1 min was defined as one unit (U) of enzyme activity.

2.3.2. Chitinase Activity Assay

Chitinase activity assay was performed by the method of Doan et al. using colloidal chitin
as substrate and N-acetyl-glucosamine as reference. The amount of chitinase which catalyzed the
hydrolysis of colloidal chitin to liberate 1 µmol of N-acetyl-glucosamine in 1 min, was defined as one
unit (U) of enzyme activity.

2.4. Culture Conditions for Exochitinase Production

One gram of each different fishery byproduct, including deCSP, deSSP, SHP, and SPP, was added
to a glass Erlenmeyer flask (250 mL) containing 100 mL of basal salt medium to provide the carbon
and nitrogen (C/N) nutrients for the growth and exochitinase production of S. speibonae TKU048.
The culture was started by adding 1% (v/v) of stock solution of S. speibonae TKU048 and maintained
under the following conditions: 37 ◦C incubation temperature and 150 rpm of agitation. An aliquot
of culture (1 mL) was withdrawn every 24 h for testing exochitinase activity. After finding the best
source of carbon and nitrogen for enzyme production, the optimization of culture conditions was
further carried out for other parameters, including amount of C/N source (0.5%–2%, w/v), incubation
temperature (30–50 ◦C), agitation speed (0–200 rpm), and initial pH (5–8).

2.5. Isolation of TKU048 Exochitinase

S. speibonae TKU048 was cultured as described above. One liter of culture supernatant was used for
isolating TKU048 exochitinase. Further isolation steps included protein concentration by (NH4)2SO4

(80% saturation), Macro-Prep High Q chromatography, and KW-802.5 size-exclusion chromatography.
These steps have been described in detail in a previous report [2]. The molecular weight of the TKU048
exochitinase was determined by SDS-PAGE analysis [2].
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2.6. Effects of Temperature and pH on Enzyme Activities

The optimal temperature of TKU048 exochitinase was investigated by incubating the mixtures
of enzyme and pNPg at different temperature points (from 20 to 100 ◦C) for 30 min. Meanwhile,
the residual activity of enzyme solutions, which were pretreated in different temperatures for 30 min,
was used to explore the thermal stability of TKU048 exochitinase. The optimal pH and pH stability of
TKU048 exochitinase were carried out following the method of Tran et al. [2].

2.7. Effects of Ion Metals on Enzyme Activity

A similar amount of TKU048 exochitinase solutions were incubated with each of different ion
metals (FeCl2, CaCl2, BaCl2, NaCl, MgCl2, ZnCl2, and CuCl2) and a metalloenzyme inhibitor (EDTA)
at 20 ◦C for 30 min. The residual activity of TKU048 exochitinase was then measured according to the
exochitinase activity assay, as described above.

2.8. Substrate Specificity Determination

Various substrates were used to explore the substrate specificity of TKU048 exochitinase, including
pNPg, dextran (from Leuconostoc spp.), β-chitin powder (βCP), water-soluble chitosan (WSC, 60% of
degree of deacetylation, DD), colloidal α-chitin (CC, from shrimp shell), cellulose, α-chitin powder
(αCP), and colloidal chitosan (CCO, from shrimp shell, 60% of DD).

2.9. Hydrolysis Mechanism

To investigate the hydrolysis mechanism of TKU048 exochitinase, chitin oligosaccharides with
degree of polymerizations (DP) 2–6 were used as the substrates. Five hundred microliters of substrate
solution (0.5 mg/mL) was mixed with 500 µL enzyme solution (2 U, approximately) in the glass tubes.
The reactions were subsequently carried out at 50 ◦C using a water bath. After every 20 min, 100 µL of
each solution was withdrawn for analysis by HPLC method (described below).

2.10. HPLC Analysis

The chitin oligosaccharides and β-chitin powder hydrolysates, which were produced from the
hydrolysis reaction catalyzed by TKU048 exochitinase, were analyzed by a Hitachi Chromaster HPLC
system (column, KS-802; flow rate, 0.6 mL/min; column temperature, 80 ◦C; mobile phase, H2O;
ultraviolet detection wavelength, 205 nm; volume of sample, 20 µL). To detect hydrolysis products,
a series of chitin oligosaccharides (DP from 1 to 6) was used as a reference.

3. Results and Discussion

3.1. Screening of an Exochitinase-Producing Bacterium

More than 50 chitinolytic microorganisms from arable lands in Northern Taiwan were isolated
on the media containing squid pen powder [2]. For producing chitinase activity, these strains were
cultivated on liquid medium containing 1% SPP and mineral salts (0.05% MgSO4 and 0.1% K2HPO4) for
3 days under the following conditions: initial pH 7.2, 150 rpm, and 37 ◦C. Among them, the exochitinase
activity of strain TKU048 culture revealed the highest value (4.285 U/mL). This strain was named as
Streptomyces speibonae according to the results of 16S rRNA sequences as well as morphological and
biochemical studies. So far, Streptomyces along with Bacillus, Paenibacillus, Serratia, and Aspergillus
are the primary microbial strains producing chitinase. However, there are only a few reports on
the production of exochitinase from Streptomyces, including S. olivaceoviridis [45], S. thermocarboxydus
TKU045 [2], and S. lividans pCHIO12 [46]. Additionally, to our best knowledge, there are no reports
on the production of exochitinase from S. speibonae species. Therefore, the discovery of exochitinase
production in S. speibonae TKU048 is of interest, especially involving the use of byproducts containing
chitin as the C/N-providing source.
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3.2. Optimization of Culture Conditions for Exochitinase Production

To explore the best C/N sources for TKU048 exochitinase production, four chitinous materials,
SHP, SPP, deSSP, and deCSP, were added to the basal medium (0.05% MgSO4 and 0.1% K2HPO4) at a
concentration of 1% (w/v) for cultivating S. speibonae TKU048. As shown in Figure 1, TKU048 exhibited
the most exochitinase activity on SHP with 39.379 U/mL after 2 days of cultivation, while its activity
was lower than 2 U/mL on other chitinous materials sources (SPP, deSSP, and deCSP). This result was
different from the research of Tran et al. which showed that SPP was the most suitable for producing
exochitinase by S. thermocarboxydus TKU045 (12.2 U/mL on SPP, approximately four-fold higher than
2.39 U/mL on SHP) [2]. This result suggests that the type of chitinous material has a significant effect
on exochitinase production by S. speibonae TKU048, in which SHP, a common byproduct in the seafood
processing industry, was demonstrated to be the best potential source. By achieving the highest
exochitinase productivity in shorter cultivation times, SHP was selected as the best C/N source for
cultivating S. speibonae TKU048.
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Figure 1. Effect of different chitinous byproducts on S. speibonae TKU048 exochitinase production.
The medium was prepared by adding 1 g of each different fishery byproducts, including demineralized
crab shell powder (deCSP), demineralized shrimp shell powder (deSSP), shrimp head powder (SHP),
and squid pen powder (SPP) to 250 mL glass Erlenmeyer flasks containing 100 mL of basal salt medium.
The cultivation conditions were conducted with 1% (v/v) of stock solution of S. speibonae TKU048, at an
incubation temperature of 37 ◦C, and 150 rpm of agitation. An aliquot of culture (1 mL) was withdrawn
every 24 h for testing exochitinase activity.

The effects of other culture parameters on the production of TKU048 exochitinase, such as
amount of SHP, incubation temperature, pH, and agitation rate, were also investigated. The results are
summarized in Table 1. Following that, S. speibonae TKU048 was found to exhibit the highest exochitinase
productivity on the medium containing 1.5% SHP with an initial pH of 6.0, incubation temperature
of 37 ◦C, and shaking speed of 175 rpm. After 2 days of fermentation, the exochitinase activity of
the optimized culture supernatant reached the maximum value at 45.668 U/mL. The exochitinase
activity was approximately 45-fold higher than before optimization. This result indicated that the
culture conditions for the production of S. speibonae TKU048 exochitinase by using only chitinous
fishery byproducts to provide the source of C/N were successfully optimized. Until now, conversion of
abundant and low-cost chitinous materials by microbial activity to produce bioactive compounds has
received great attention [11–31]. Consequently, the current results could be promising in providing a
novel beneficial application of shrimp heads—a chitin-containing byproduct from fishery processing—in
producing exochitinase via S. speibonae TKU048.
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Table 1. Comparison of culture conditions before and after optimization.

Compared Factors Before Optimization After Optimization

Type of chitinous byproduct SPP SHP
Amount of C/N source (%) 1 1.5

Cultivation temperature (◦C) 37 37
Initial pH 7.8 6.0

Shaking speed (rpm) 150 175
Incubation time (day) 3 2

Exochitinase activity (U/mL) 1.001 45.668

3.3. Isolation of Exochitinase

Since there are no previous reports of exochitinase from S. speibonae, it is necessary to investigate
the characteristics of exochitinase from this species. To explore its characteristics for comparison with
other reports, TKU048 exochitinase was isolated and purified by serial steps: ammonium sulfate
precipitation, Macro-Prep High Q chromatography, and size exclusion chromatography on KW-802.5
column. The result is summarized in Table 2. Using ion-exchange chromatography, one peak showing
exochitinase activity was found in eluted fractions 80–91 (Figure 2). These fractions were pooled
for further purification by KW-802.5 column. Finally, 0.03 mg of TKU048 exochitinase was collected.
The purification showed low yield recovery (0.1%), but high purity yield (376.3-fold). It also showed
the strong specific activity result of the obtained enzyme (1.92 × 103 U/mg), which was higher than in
other reports [2,13,35,44,47–49]. This result indicates that the obtained enzyme not only showed high
purity but also exhibited strong exochitinase activity.

Table 2. Purification of the exochitinase from S. speibonae TKU048.

Steps
Total

Specific Activity
(U/mg)

Purification
Fold

Recovery Activity Yield
(%)Protein

(mg)
Activity

(U)

Culture supernatant 9.24 × 103 4.71 × 104 5.10 1.0 100.0
(NH4)2SO4 ppt. 2.47 × 103 1.56 × 104 6.33 1.2 33.2

Macro-Prep High Q column 1.35 1.45 × 103 1.08 × 103 211.3 3.1
KW-802.5 column 0.03 48.09 1.92 × 103 376.3 0.1
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NaCl gradient from 0 to 0.5 M and 2.5 mL of flow rate. Fifty microliters of each tube were withdrawn
to test the exochitinase activity. The exochitinase activity fraction was found from tubes 80 to 91.
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According to Figure 3, the molecular weight of S. speibonae TKU048 was calculated to be
approximately 21 kDa. The molecular weight of TKU048 exochitinase was consistent with Streptomyces
sp. M-20 chitinase (20 kDa) [37], and smaller than that from other reports, for instance, S. violaceusniger
XL-2 chitinase (28 kDa) [50], Streptomyces DA11 chitinase (34 kDa) [38], S. griseus MTCC 9723 chitinase
(34 kDa) [40], S. anulatus CS242 chitinase (38 kDa) [51], Streptomyces CS147 chitinase (41 kDa) [52],
Streptomyces sp. CS501 chitinase (43 kDa) [47], S. halstedii AJ-7 chitinase (55 kDa) [48], S. violaceusniger
MTCC3959 chitinase (56.5 kDa) [41], S. violascens NRRL B2700 chitinase (65 kDa) [39], and S. venezuelae
P10 (66 kDa) [49] with the exception of S. thermocarboxydus TKU045 chitinase (12.8 kDa) [2]. This indicates
that S. speibonae TKU048 exochitinase is one of the smallest chitinases from the Streptomyces genus.Polymers 2019, 11, x FOR PEER REVIEW 7 of 14 
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3.4. Effects of Temperature and pH on the Activity and Stability of TKU048 Activity

A range of temperature from 20–100 ◦C was used to investigate the influence of temperature on
TKU048 exochitinase activity. Figure 4 revealed that the optimal temperature of TKU048 exochitinase
was 60 ◦C and its stability was up to 50 ◦C. However, at the optimal temperature, the enzyme still
retained more than 60% of its activity. Among the chitinases from Streptomyces species, TKU048
exochitinase showed good thermal stability; most of them showed an optimal and stable temperature
point similar to or lower than that of the TKU048 exochitinase [2] with some exceptions, such as
S. anulatus CS242 chitinase (stability temperature was 60 ◦C) [51] or S. thermoviolaceus OPC-520 chitinase
(optimal temperature was 70–80 ◦C) [53]. Thermal stability can benefit the application of chitinase in
industrial uses.
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The effects of pH on activity and stability of TKU048 chitinase were also studied herein. The optimal
pH of TKU048 exochitinase was found at pH 5–7 (on sodium acetate and sodium phosphate buffer,
respectively). However, the enzyme also exhibited another optimal pH point at pH 3 when using
glycine HCl buffer with over than 80% activity, compared with its activity at pH 5. This suggests that
the optimal pH of TKU048 exochitinase also depends on the buffer system. This result was different
from most of the other reports of chitinase from other Streptomyces strains, which showed an optimal
pH of 5–8 [37–41,47,48,50–52]; only several strains exhibited an optimal pH at a more acidic point,
such as S. thermocarboxydus TKU045 (pH 4) [2] and Streptomyces sp. (pH 2 and 6) [54]. To determine the
pH stability of S. speibonae TKU048 exochitinase, the enzyme was incubated at a range of pH from
2 to 11 using different buffer systems for 30 min, as mentioned above, and its residual activity was
measured after adjusting the enzyme solution to pH 5. Since retaining over 80% of initial activity in
pH range from 3–8, S. speibonae TKU048 exochitinase also exhibited good pH stability, especially under
acidic conditions.

3.5. Substrate Specificity

Different kinds of substrates were used to investigate the specificity activity of TKU048 exochitinase.
As shown in Table 3, TKU048 exochitinase expressed the best activity at 43.887 U/mL on pNPg
(by p-nitrophenol method), followed by β-chitin powder (βCP) > colloidal chitosan (CCO) > colloidal
chitin (CC) > water-soluble chitosan (WSC) > cellulose (by reducing sugar method). In addition,
TKU048 exochitinase did not show activity on dextran and α-chitin powder (αCP). This result
indicates that TKU048 chitinase specifically acted on the β-(1→4)-linkages and could hydrolyze
different types of substrates, including chitin, chitosan, and cellulose. The different activity on αCP,
and βCP suggest that the crystalline structure of chitin also affected the ability of TKU048 exochitinase.
In addition, it was interesting that βCP was the most suitable substrate of TKU048 exochitinase,
with the exception of pNPg. Generally, chitinases possess higher activity on colloidalchitin than on
powder chitin [13,35,43,44]; however, some opposing results could be found, such as for chitinase
and chitosanase from B. cereus TKU030 [21]. However, some chitinases have exhibited similar results;
in producing chitin oligosaccharides or GlcNAc by enzymatic method, chitin must be pretreated with a
strong acid, like concentrated HCl, in order to form colloidal chitin. This chemical process has several
drawbacks, such as in releasing toxic wastewater and altering chitin’s structure. By showing the most
activity on β-chitin powder, TKU048 exochitinase may have potential for the direct preparation of
chitin oligosaccharides or GlcNAc from chitin powder.
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Table 3. Substrate specificity of TKU048 exochitinase.

Substrate * Chitinolytic Activity (U/mL)

pNPg 43.887 ± 0.698
Dextran 0

WSC 0.258 ± 0.008
βCP 0.406 ± 0.003
CC 0.319 ± 0.002

Cellulose powder 0.218 ± 0.024
αCP 0
CCO 0.341 ± 0.034

* WSC: water-soluble chitosan; βCP: β chitin powder; CC: colloidal chitin; αCP: α chitin powder; CCO:
colloidal chitisan.

3.6. Effects of Metal Ions

As shown in Figure 5, S. speibonae TKU048 exochitinase was strongly inhibited by Cu2+ > Fe2+ >

Zn2+. However, in the presence of Ba2+, Ca2+, Na+, Mg2+, and EDTA, TKU048 exochitinase possessed
higher activity than that in the control. These results were markedly different from those of other
reports [35,37–39].
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Figure 5. Effect of ion metals on the activity of TKU048 exochitinase. TKU048 exochitinase was pre-
incubated with each of chemicals for 30 min. The activity of TKU048 exochitinase in the absence of 
treatment chemicals was used as a control to estimate relative activity (%). 

3.7. Hydrolysis Mechanism 

To investigate the hydrolysis mechanism of TKU048 exochitinase, chitin oligosaccharides with 
degree of polymerization (DP) 2–6 were used as the substrates. As shown in Figure 6, TKU048 
exochitinase could rapidly hydrolyze all chitin oligosaccharides (2–6 of DP) to release GlcNAc as the 
main product. This indicates that the obtained enzyme was an exochitinase. As far as we know, 
exochitinase was considered to separate chitobiase and N-acetyl-β-glucosaminidase. Due to its 
hydrolyzing abilities (GlcNAc)2 (Figure 6A), TKU048 exochitinase could initially be classified as an 
N-acetyl-β-glucosaminidase. Furthermore, the low rate of (GlcNAc)2 production from the hydrolysis 
of chitin oligosaccharides DP 3 to DP 6 (Figure 6C–E) revealed that the release of this dimer was not 
achieved by chitobiase activity. In Figure 6E, the minor (GlcNAc)3 liberated from the hydrolysis 
reaction of (GlcNAc)6 in the first 20 min indicates that TKU048 exochitinase did not express 
endochitinase or chitotriase activity. Taken together, the hydrolysis mechanism of TKU048 
exochitinase was recognized as following N-acetyl-β-glucosaminidase activity, which catalyzes the 

Figure 5. Effect of ion metals on the activity of TKU048 exochitinase. TKU048 exochitinase was
pre-incubated with each of chemicals for 30 min. The activity of TKU048 exochitinase in the absence of
treatment chemicals was used as a control to estimate relative activity (%).

3.7. Hydrolysis Mechanism

To investigate the hydrolysis mechanism of TKU048 exochitinase, chitin oligosaccharides with
degree of polymerization (DP) 2–6 were used as the substrates. As shown in Figure 6, TKU048
exochitinase could rapidly hydrolyze all chitin oligosaccharides (2–6 of DP) to release GlcNAc as
the main product. This indicates that the obtained enzyme was an exochitinase. As far as we
know, exochitinase was considered to separate chitobiase and N-acetyl-β-glucosaminidase. Due to its
hydrolyzing abilities (GlcNAc)2 (Figure 6A), TKU048 exochitinase could initially be classified as an
N-acetyl-β-glucosaminidase. Furthermore, the low rate of (GlcNAc)2 production from the hydrolysis
of chitin oligosaccharides DP 3 to DP 6 (Figure 6C–E) revealed that the release of this dimer was not
achieved by chitobiase activity. In Figure 6E, the minor (GlcNAc)3 liberated from the hydrolysis reaction
of (GlcNAc)6 in the first 20 min indicates that TKU048 exochitinase did not express endochitinase or
chitotriase activity. Taken together, the hydrolysis mechanism of TKU048 exochitinase was recognized
as following N-acetyl-β-glucosaminidase activity, which catalyzes the hydrolysis reaction of chitin
oligosaccharides at the end point to release GlcNAc. The hydrolysis mechanism of TKU048 exochitinase
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was different from the descriptions in several reports; for instance, Chitinolyticbacter meiyuanensis
SYBC-H1 strain produced a chitinase (CmChi1) which possessed both exochitinase and endochitinase
abilities and poor N-acetyl-β-glucosaminidase activity [43], PbChi70 produced by P. barengoltzii showed
only exochitinase activity [55], PbChi74 produced by P. barengoltzii possessed two chitinolytic activities
(exochitinase and N-acetyl-β-glucosaminidase) but lacked endochitinase activity [44], and exo-Chi O1
from S. olivaceoviridis was demonstrated to be an exochitinase that catalyzed chitin to release chitin
oligosaccharide with DP 2 as the major product [45].
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Figure 6. HPLC analysis of the hydrolysis products from (GlcNAc)2–6 by TKU048 exochitinase.
A–E: (GlcNAc)2–(GlcNAc)6, respectively. The reaction was conducted by adding 500 µL substrate
solution (0.5 mg/mL) with 500 µL enzyme solution (2 U, approximately) and incubated at 50 ◦C. Twenty
microliters of sample was used for a single HPLC analysis.

3.8. Evaluation of GlcNAc Production by TKU048 Exochitinase

Since β-chitin powder was demonstrated to be a suitable substrate for TKU048 exochitinase,
this material was chosen for GlcNAc production. The hydrolysis reaction was performed in sodium
acetate buffer (50 mM, pH 5) with 0.455 mg/mL of β-chitin powder concentration and 2 U/mL of
TKU048 exochitinase (measured by p-nitrophenol reference, approximately) on an incubator (150 rpm,
50 ◦C). As shown in Figure 7A, the peaks indicating GlcNAc appeared at the retention time of 13.69 min,
and the maximum value was observed after 96 h of incubation time. The area of GlcNAc peaks was
then used to calculate GlcNAc concentration and GlcNAc production yield. It was found that GlcNAc
concentration and GlcNAc yield increased over time (Figure 7B). Finally, 0.335 mg/mL of GlcNAc
could be obtained from 0.455 mg/mL of β-chitin powder with a yield of 73.64% in 96 h. Several
reports show that the hydrolysis of chitin by chitinases observed the GlcNAc concentration in the
range of 9.8–39.3 µg/mL [43,56]. The higher GlcNAc may have an inhibitory effect on the activity
of chitinases [56]. Consequently, it indicated that TKU048 exochitinase may be suitable for GlcNAc
production in a higher concentration of this product.
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TKU048 may give it great potential in GlcNAc production. 

Author Contributions: Conceived the study: S.-L.W., T.N.T., C.T.D. Designed and performed the study: S.-L.W., 
T.N.T., C.T.D. Contributed reagents/materials/analysis tools: S.-L.W. Analyzed data: S.-L.W., T.N.T. C.T.D., 
V.B.N., A.D.N., T.P.K.V., M.T.N. Wrote the paper: S.-L.W., T.N.T., C.T.D. 

Acknowledgments: This work was supported in part by a grant from the Ministry of Science and Technology, 
Taiwan (MOST 106-2320-B-032-001-MY3). 

Conflicts of Interest: The authors declare no conflict of interest. 

References 

1. Wang, S.L.; Liang, T.W. Microbial reclamation of squid pens and shrimp shell. Res. Chem. Intermed. 2017, 
43, 3445–3462. 

2. Tran, T.N.; Doan, C.T.; Nguyen, V.B.; Nguyen, A.D. The isolation of chitinase from Streptomyces 
thermocarboxydus and its application in the preparation of chitin oligomers. Res. Chem. Intermed. 2019, 45, 
727–742. 

3. Hiranpattanakul, P.; Jongjitpissamai, T.; Aungwerojanawit, S.; Tachaboonyakiat, W. Fabrication of a 
chitin/chitosan hydrocolloid wound dressing and evaluation of its bioactive properties. Res. Chem. Intermed. 
2018, 44, 4913–4928. 

4. Wang, S.L.; Yu, H.T.; Tsai, M.H.; Doan, C.T.; Nguyen, V.B.; Do, V.C.; Nguyen, A.D. Conversion of squid 
pens to chitosanases and dye adsorbents via Bacillus cereus. Res. Chem. Intermed. 2018, 44, 4903–4911. 

5. Ding, F.; Li, H.; Du, Y.; Shi, X. Recent advances in chitosan-based self-healing materials. Res. Chem. Intermed. 
2018, 44, 4827–4840. 

Figure 7. The hydrolysis of β-chitin powder by TKU048 exochitinase: A: HPLC analysis of chitin
hydrolysis pattern; B, the time course of the chitin hydrolysis of chitin.

4. Conclusions

One of the most important applications of chitinase is its use in hydrolyzing chitin/chitosan to
produce bioactive chitooligosaccharides and GlcNAc. In the current study, exochitinase production was
reported on a novel bacterial strain, S. speibonae TKU048, by using shrimp heads, a low-cost chitinous
material, as the sole C/N source. S. speibonae TKU048 exochitinase was purified with high specific activity
(1.92 × 103 U/mg) and had a molecular mass of 21 kDa. The enzyme also showed valuable properties
such as thermal stability, optimal acidic pH, and degradable β-chitin powder. In addition, the hydrolysis
mechanism of TKU048 was investigated, which mainly followed N-acetyl-β-glucosaminidase activity.
The result also indicated that TKU048 exochitinase could hydrolyze β-chitin powder to release GlcNAc
at high concentrations. The excellent characteristics of S. speibonae TKU048 may give it great potential
in GlcNAc production.
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